

Detecting and tracing farmed salmon with otolith tags: developing and validating mark delivery techniques

University of Melbourne, Australia Fletcher Warren-Myers Associate Prof. Steve Swearer Dr Tim Dempster

Institute of Marine Research, Norway Dr Tom Hansen Dr Per Gunnar Fjelldal

Aims

- To evaluate alternate techniques for mass marking farmed Atlantic salmon with alkaline earth elements.
- 1) Marking via injection Norway vaccinates all Atlantic salmon
- 2) Marking via maternal transfer 5000 eggs with one injection
- 3) Marking via egg immersion Immerse 2000 eggs in 1 litre

Main questions for each technique

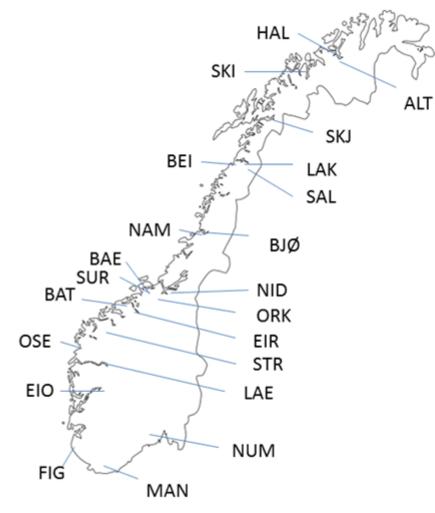
- Optimization *marker concentration*?
- Welfare assessment side effects?
- Commercial viability applicability, cost?
- Confirmation Guaranteeing 100% differentiation between farm and wild

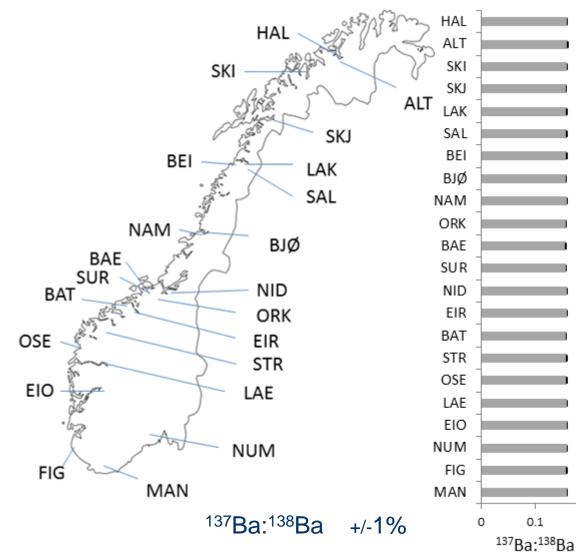
Background ratios of alkaline earth elements

Natural levels of different forms of Ba, Sr & Mg throughout Norwegian wild salmon populations.

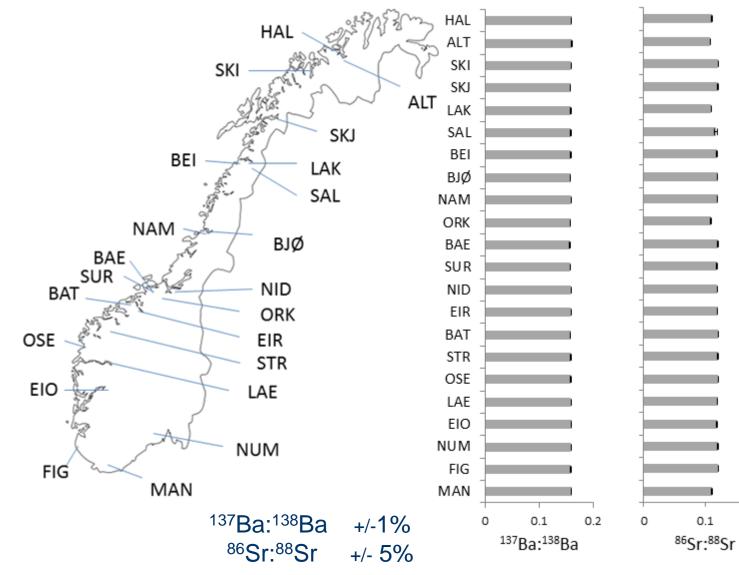
Spatially: Samples from 22 rivers from north to south

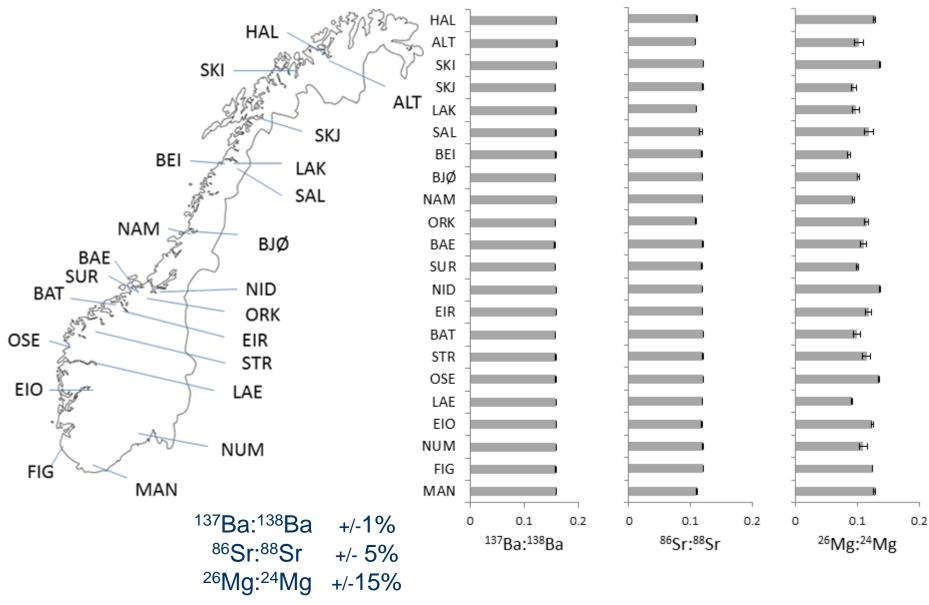
Temporally: Samples from 2 rivers spanning from 1990 to 2010


(Otoliths sourced from NINA archive samples, located in Trondheim, Norway)

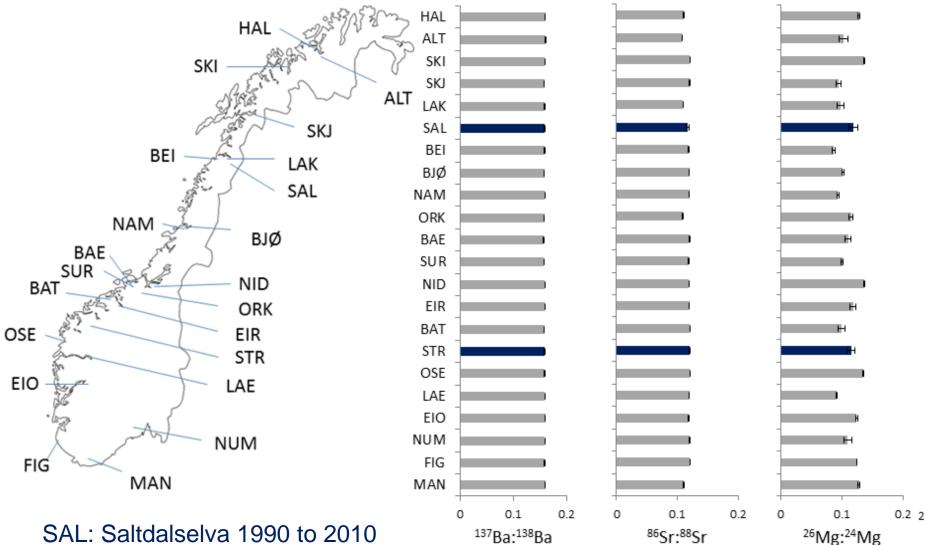


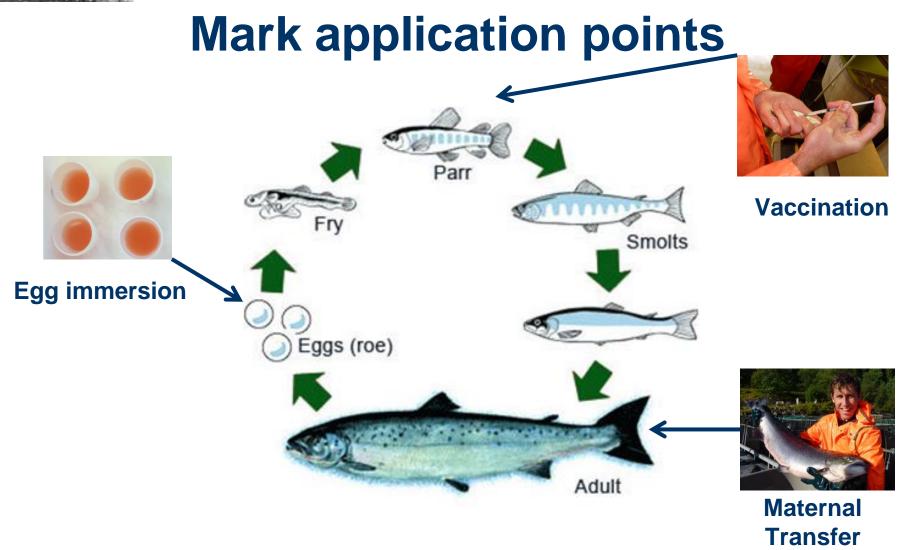
0.2



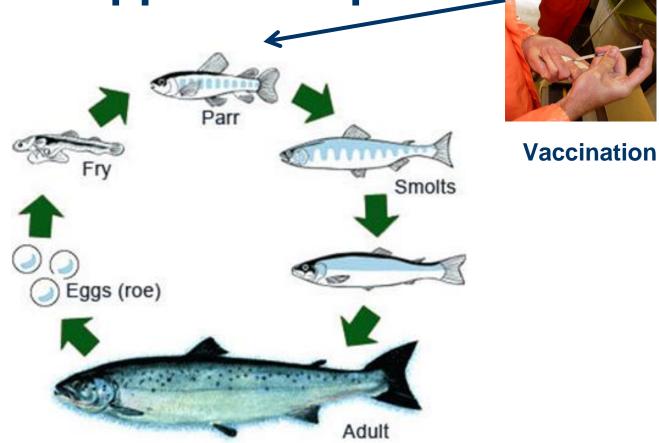

0.1

0.2





SAL: Saltdalselva 1990 to 2010 STR: Strynselva 1990 to 2009



Mark application points

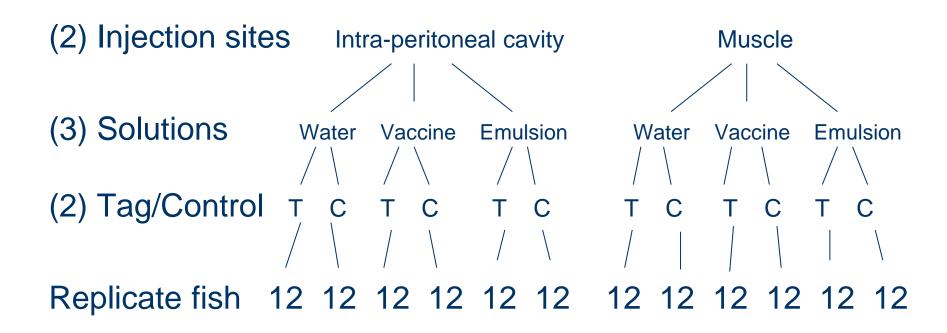
Mass marking via vaccination

Vaccination 1

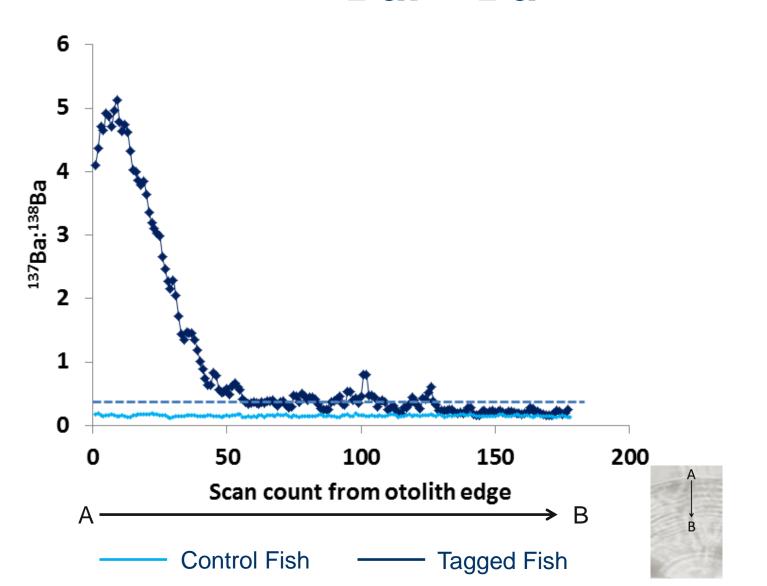
Question: Is carrier solution or injection site important for marker uptake?

Method:

- Fish were pit tagged 2 months prior
- 3 tags used: ¹³⁷Ba, ⁸⁶Sr, and ²⁶Mg
- Concentration 2 µg per g fish weight (Average weight was 57 grams (SE +/- 0.1 g)
- Otolith samples 2 weeks post injecting

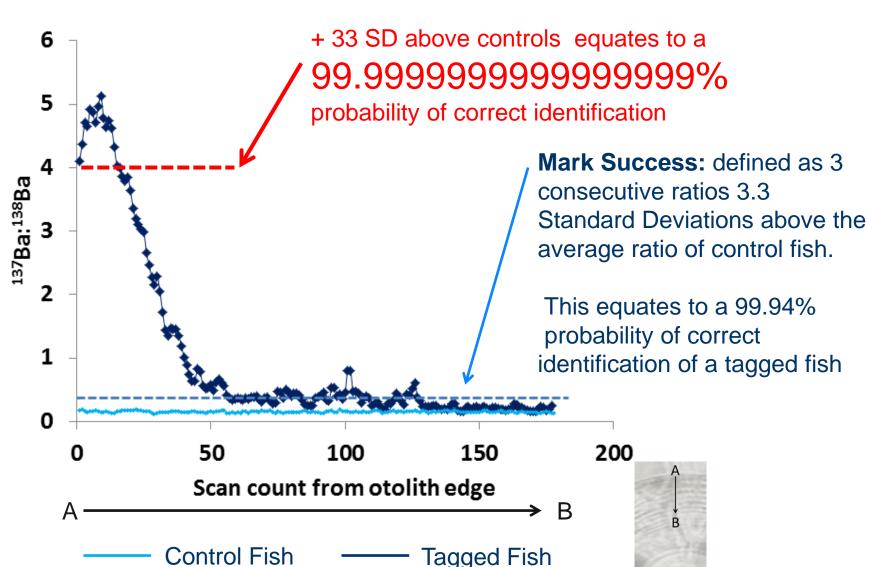


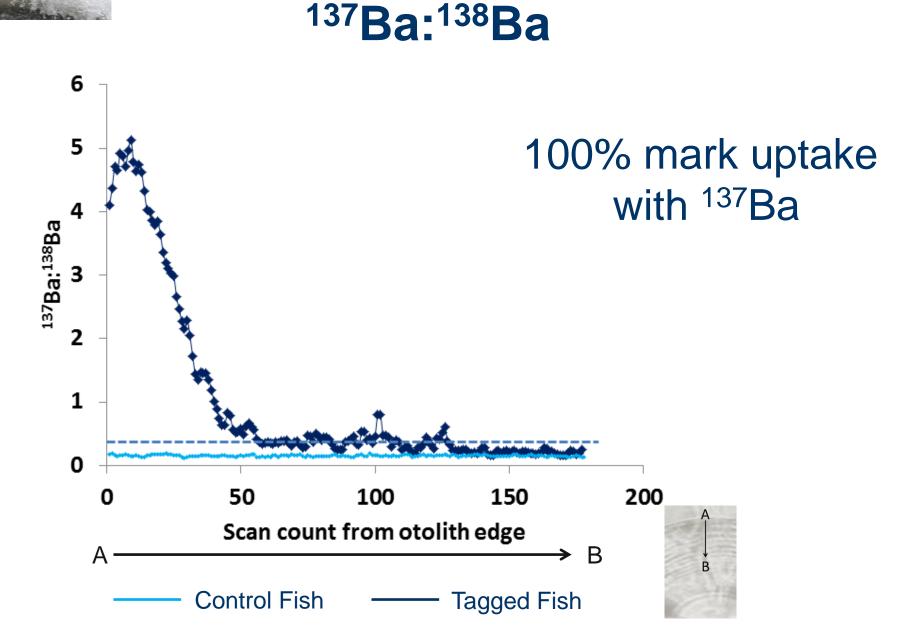
Experimental design

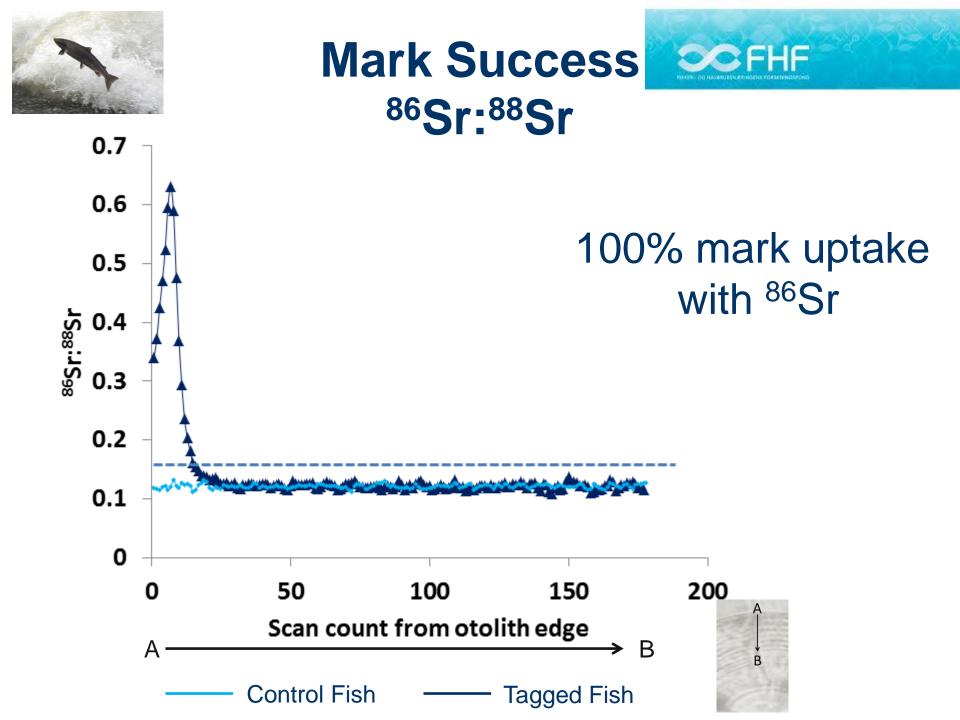


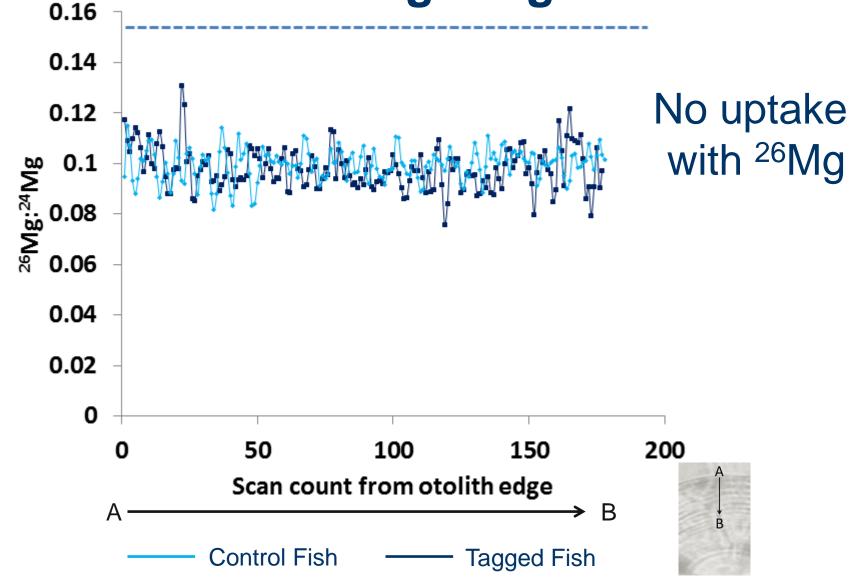
Total of 144 fish, spread amongst 3 tanks (48 per tank)

Results ¹³⁷Ba:¹³⁸Ba




Results ¹³⁷Ba:¹³⁸Ba





Mark Success ²⁶Mg:²⁴Mg

Injection site:

Intra-peritoneal cavity overall produced stronger marks compared to muscle injection for both ¹³⁷Ba and ⁸⁶Sr

Injection site:

Intra-peritoneal cavity overall produced stronger marks compared to muscle injection for both ¹³⁷Ba and ⁸⁶Sr

Carrier solution:

Water and emulsion solutions produced stronger marks compared to the vaccine solution for ¹³⁷Ba

Injection site:

Intra-peritoneal cavity overall produced stronger marks compared to muscle injection for both ¹³⁷Ba and ⁸⁶Sr

Carrier solution:

Water and emulsion solutions produced stronger marks compared to the vaccine solution for ¹³⁷Ba

Vaccine and emulsion solutions produced stronger marks compared to water for ⁸⁶Sr

Best to inject into the intra-peritoneal cavity

MINOVA 6 as a carrier is appropriate to use

¹³⁷Ba and ⁸⁶Sr markers highly successful

Vaccination 2

Method: Deliver multiple concentrations and combinations of markers via injection

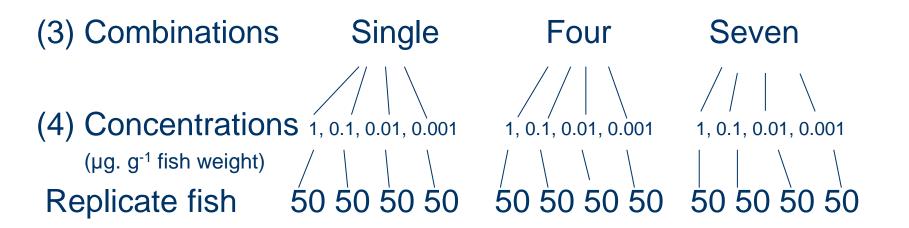
Combinations:

- **1** : ¹³⁷Ba
- **4** : ¹³⁷Ba, ¹³⁵Ba, ¹³⁶Ba, ⁸⁶Sr
- **7** : ¹³⁷Ba, ¹³⁶Ba, ¹³⁵Ba, ¹³⁴Ba, ⁸⁷Sr, ⁸⁶Sr & ²⁶Mg

 Concentrations:
 1 μg

 (μg. g⁻¹ fish weight)
 0.1μg

 (Average weight 102 +/- 0.6 g)
 0.01 μg


 0.001 μg

Experimental design

Plus 50 control fish injected with vaccine only

- Fish spread amongst 5 tanks (130 per tank)
- Standard vaccination volume (0.1 ml)
- Otolith samples collected 3 months post vaccination

		Mark uptake						
Number of	Concentration	127 D -						
Markers	(µg. g⁻¹ fish)	¹³⁷ Ba						
	1							
1	0.1							
	0.01							
	0.001							

		Mark uptake						
Number of Markers	Concentration (µg. g⁻¹ fish)	¹³⁷ Ba						
	1	100%						
1	0.1	100%						
	0.01	100%						
	0.001	100%						

			Mark uptake					
Number of	Concentration							
Markers	(µg. g⁻¹ fish)	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	⁸⁶ Sr			
	1	100%						
1	0.1	100%						
	0.01	100%						
	0.001	100%						
	1							
4	0.1							
	0.01							
	0.001							

			Mark uptake						
Number of	Concentration								
Markers	(µg. g⁻¹ fish)	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	⁸⁶ Sr				
	1	100%							
1	0.1	100%							
	0.01	100%							
	0.001	100%							
	1	100%	100%	100%	100%				
4	0.1	100%	100%	100%	30%				
	0.01	100%	100%	100%	0%				
	0.001	80%	20%	80%	0%				

			Mark uptake						
Number of Markers	Concentration (µg. g⁻¹ fish)	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	⁸⁶ Sr	¹³⁴ Ba	⁸⁷ Sr	²⁶ Mg	
	1	100%							
1	0.1	100%							
	0.01	100%							
	0.001	100%							
	1	100%	100%	100%	100%				
4	0.1	100%	100%	100%	30%				
	0.01	100%	100%	100%	0%				
	0.001	80%	20%	80%	0%				
	1								
7	0.1								
	0.01								
	0.001								

			Mark uptake						
Number of Markers	Concentration (µg. g⁻¹ fish)	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	⁸⁶ Sr	¹³⁴ Ba	⁸⁷ Sr	²⁶ Mg	
	1	100%							
1	0.1	100%							
	0.01	100%							
	0.001	100%							
	1	100%	100%	100%	100%				
4	0.1	100%	100%	100%	30%				
	0.01	100%	100%	100%	0%				
	0.001	80%	20%	80%	0%				
	1	100%	100%	100%	100%	100%	100%	0%	
7	0.1	100%	100%	100%	20%	100%	60%	0%	
	0.01	100%	100%	100%	0%	100%	0%	0%	
	0.001	70%	20%	70%	0%	0%	0%	0%	

¹³⁷Ba as a single marker can be used at concentrations as low as 0.001 µg per gram of fish

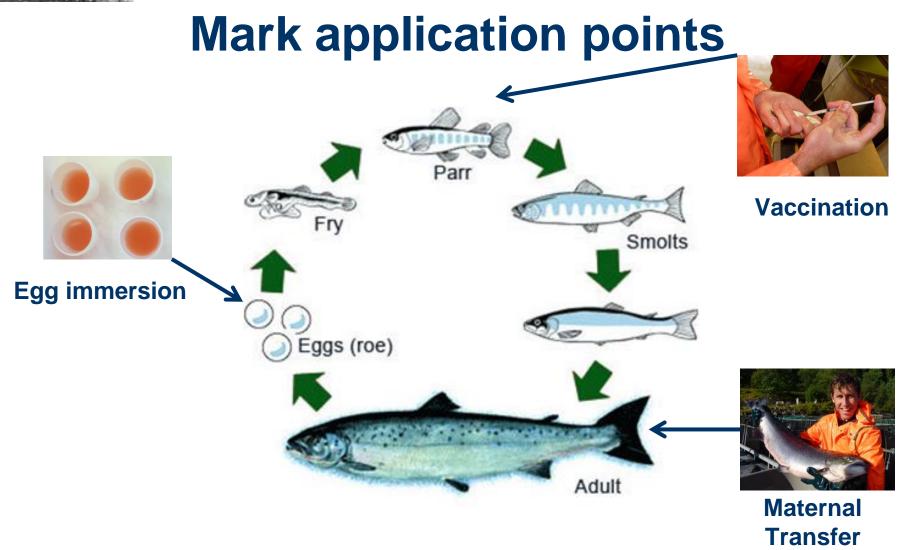
¹³⁷Ba as a single marker can be used at concentrations as low as 0.001 µg per gram of fish

Combinations of ¹³⁴Ba, ¹³⁵Ba ¹³⁶Ba and ¹³⁷Ba can be used at concentrations as low as 0.01 µg per gram of fish

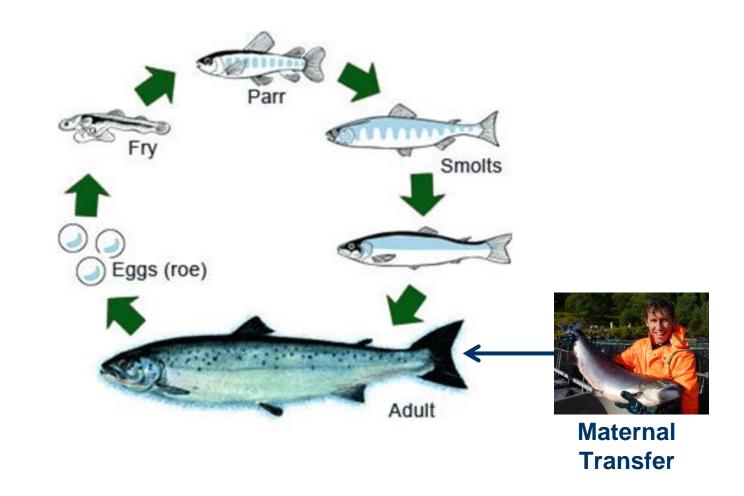
¹³⁷Ba as a single marker can be used at concentrations as low as 0.001 µg per gram of fish

Combinations of ¹³⁴Ba, ¹³⁵Ba ¹³⁶Ba and ¹³⁷Ba can be used at concentrations as low as **0.01** µg per gram of fish

Combinations using ⁸⁶Sr and ⁸⁷Sr can be used at concentrations as low as 1 µg per gram of fish.



Mass Marking Via Maternal Transfer

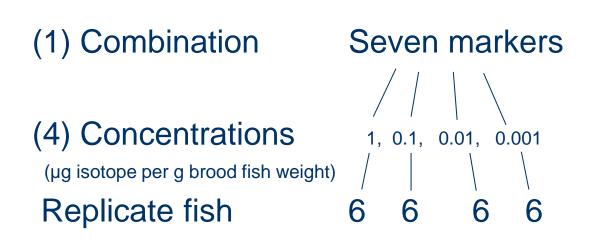


Mark application points

Maternal Transfer

Method: Multiple concentrations using a seven marker combination

- Injected 30 female brood stock
- Standard injection volume of 60 ml
- Combination of ¹³⁷Ba, ¹³⁶Ba, ¹³⁵Ba, ¹³⁴Ba, ⁸⁷Sr, ⁸⁶Sr & ²⁶Mg



Experimental design

Plus 6 control fish injected with saline solution .

~1500 eggs per brood fish were stripped and fertilised First samples were taken before first feeding

Spawning	# Brood fish	Concentration			Ma	ark uptak	e		
Date	Spawned	µg. g⁻¹ brood fish	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	¹³⁴ Ba	⁸⁷ Sr	⁸⁶ Sr	²⁶ Mg
Week 1	4								
Week 2	0	2							
Week 3	2								

Spawning	# Brood fish	Concentration			Ma	ark uptake	9		
Date	Spawned	µg. g⁻¹ brood fish	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	¹³⁴ Ba	⁸⁷ Sr	⁸⁶ Sr	²⁶ Mg
Week 1	4		100%	100%	100%	100%	15%	3%	10%
Week 2	О	2							
Week 3	2		100%	100%	100%	100%	100%	100%	30%

Spawning	# Brood fish	Concentration			Ma	ark uptake	9		
Date	Spawned	µg. g⁻¹ brood fish	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	¹³⁴ Ba	⁸⁷ Sr	⁸⁶ Sr	²⁶ Mg
Week 1	4		100%	100%	100%	100%	15%	3%	10%
Week 2	0	2							
Week 3	2		100%	100%	100%	100%	100%	100%	30%

Week 1	1		95%	10%	100%	5%	0%	0%	0%
Week 2	4	0.2	100%	98%	100%	90%	5%	5%	8%
Week 3	1		100%	100%	100%	100%	10%	0%	0%

Spawning	# Brood fish	Concentration			Ma	ark uptak	e		
Date	Spawned	µg. g⁻¹ brood fish	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	¹³⁴ Ba	⁸⁷ Sr	⁸⁶ Sr	²⁶ Mg
Week 1	4		100%	100%	100%	100%	15%	3%	10%
Week 2	0	2							
Week 3	2		100%	100%	100%	100%	100%	100%	30%
Week 1	1		95%	10%	100%	5%	0%	0%	0%
Week 2	4	0.2	100%	98%	100%	90%	5%	5%	8%
Week 3	1		100%	100%	100%	100%	10%	0%	0%
Week 1	2		95%	0%	100%	0%	0%	0%	0%
Week 2	1	0.02	100%	10%	100%	10%	0%	0%	10%
Week 3	0								

Spawning	# Brood fish	Concentration			Ma	ark uptak	e		
Date	Spawned	µg. g⁻¹ brood fish	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	¹³⁴ Ba	⁸⁷ Sr	⁸⁶ Sr	²⁶ Mg
Week 1	4		100%	100%	100%	100%	15%	3%	10%
Week 2	0	2							
Week 3	2		100%	100%	100%	100%	100%	100%	30%
Week 1	1		95%	10%	100%	5%	0%	0%	0%
Week 2	4	0.2	100%	98%	100%	90%	5%	5%	8%
Week 3	1		100%	100%	100%	100%	10%	0%	0%
Week 1	2		95%	0%	100%	0%	0%	0%	0%
Week 2	1	0.02	100%	10%	100%	10%	0%	0%	10%
Week 3	0								

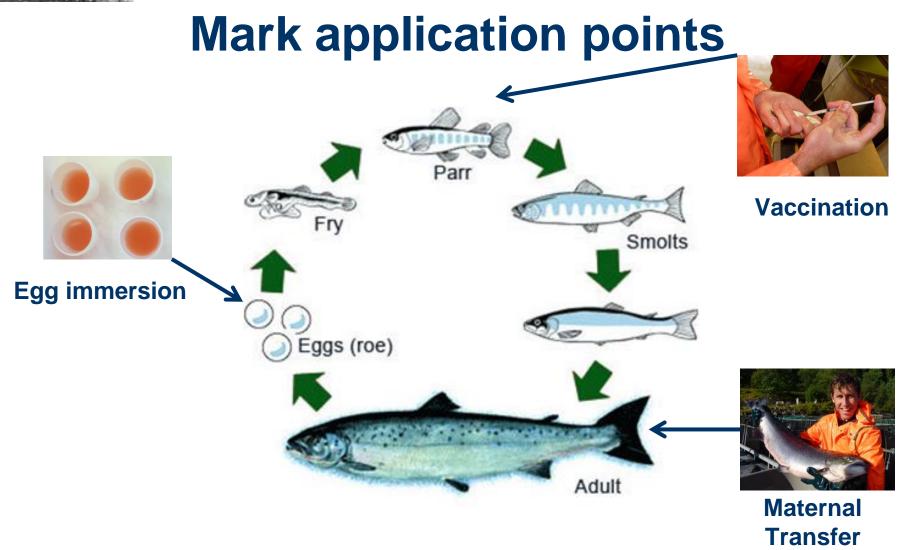
Week 1	0		0%	0%	0%	0%	0%	0%	0%
Week 2	4	0.002	30%	0%	65%	0%	0%	0%	8%
Week 3	2		75%	0%	80%	0%	0%	0%	0%

- Mark uptake depends on:
 - A) Concentration of marker
- B) Time between injection and spawning

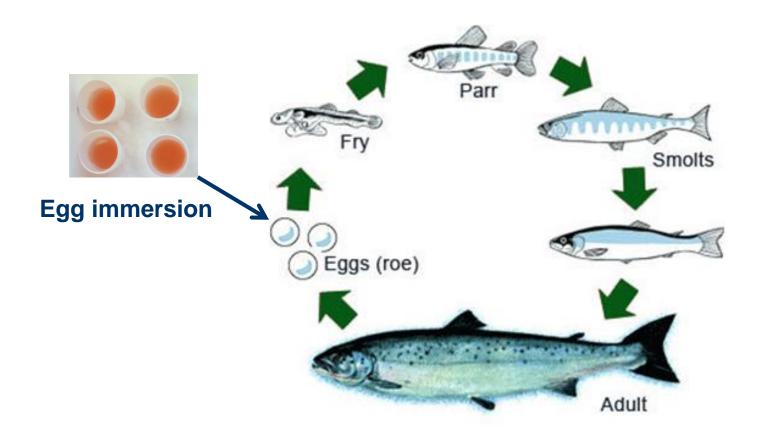
- Mark uptake depends on:
 - A) Concentration of marker
 - B) Time between injection and spawning
- Combinations using ¹³⁷Ba and ¹³⁵Ba can be created at concentrations as low as 0.02 µg. g⁻¹ brood stock

- Mark uptake depends on:
 - A) Concentration of marker
 - B) Time between injection and spawning
- Combinations using ¹³⁷Ba and ¹³⁵Ba can be created at concentrations as low as 0.02 µg. g⁻¹ brood stock
- Combinations using ¹³⁶Ba and ¹³⁴Ba can be created at a concentrations as low as of 0.2 µg. g⁻¹ brood stock

- Mark uptake depends on:
 - A) Concentration of marker
 - B) Time between injection and spawning
- Combinations using ¹³⁷Ba and ¹³⁵Ba can be created at concentrations as low as 0.02 µg. g⁻¹ brood stock
- Combinations using ¹³⁶Ba and ¹³⁴Ba can be created at a concentrations as low as of 0.2 μg. g⁻¹ brood stock
- Combinations using ⁸⁷Sr and ⁸⁶Sr can be created at a concentration as low as 2 µg. g⁻¹ brood stock



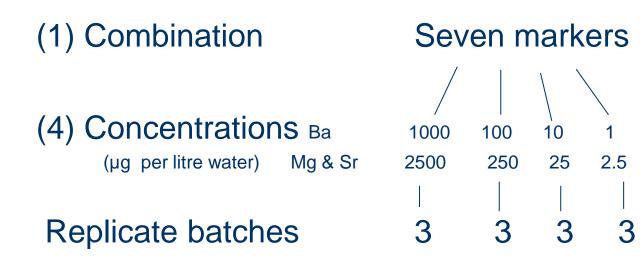
Mass Marking Via Egg Immersion



Mark application points

Egg Immersion

Method: Multiple concentrations using a seven marker combination.


- Standard immersion volume (300 ml)
- Standardised egg volume (175 ml)
- Combination of ¹³⁷Ba, ¹³⁶Ba, ¹³⁵Ba, ¹³⁴Ba, ⁸⁷Sr, ⁸⁶Sr & ²⁶Mg
- 2 hour immersion time

Experimental design

Plus 3 control batches immersed in pure water Each batch contained ~1000 fertilised eggs First otolith samples taken before first feeding

Marker Concen	trations (µg. L ⁻¹)		Mark uptake							
¹³⁷ Ba, ¹³⁶ Ba, ¹³⁵ Ba, ¹³⁴ Ba	⁸⁷ Sr, ⁸⁶ Sr, ²⁶ Mg	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	¹³⁴ Ba	⁸⁷ Sr	⁸⁶ Sr	²⁶ Mg		
1000	2500									
100	250									
10	25									
1	2.5									

Marker Concen	trations (µg. L ⁻¹)		Mark uptake							
¹³⁷ Ba, ¹³⁶ Ba, ¹³⁵ Ba, ¹³⁴ Ba	⁸⁷ Sr, ⁸⁶ Sr, ²⁶ Mg	¹³⁷ Ba	¹³⁶ Ba	¹³⁵ Ba	¹³⁴ Ba	⁸⁷ Sr	⁸⁶ Sr	²⁶ Mg		
1000	2500	100%	100%	100%	93%	7%	0%	4%		
100	250	100%	3%	100%	0%	0%	0%	0%		
10	25	3%	0%	21%	0%	0%	0%	3%		
1	2.5	0%	0%	0%	3%	0%	0%	0%		

Concentration of marker important

Concentration of marker important

¹³⁷Ba and ¹³⁵Ba 100% mark uptake at a concentration of 100 µg. L⁻¹

Concentration of marker important

¹³⁷Ba and ¹³⁵Ba 100% mark uptake at a concentration of 100 µg. L⁻¹

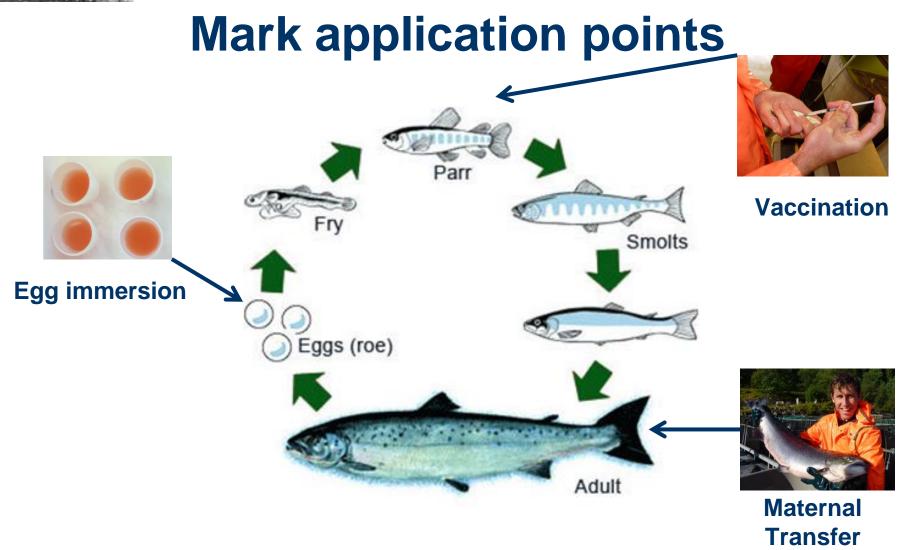
¹³⁶Ba 100% mark uptake at a concentration of 1000 µg. L⁻¹

Concentration of marker important

¹³⁷Ba and ¹³⁵Ba 100% mark uptake at a concentration of 100 µg. L⁻¹

¹³⁶Ba 100% mark uptake at a concentration of 1000 µg. L⁻¹

Length of immersion time requires further investigation



- All three techniques could be used for mass marking Atlantic salmon with 100% mark success
- Vaccination: 63 codes, Maternal Transfer: 63 codes, Egg immersion: 7 codes
- 100% mark uptake is easiest to achieve using Ba markers
- 100% mark uptake with Sr markers is possible at higher concentrations compared to Ba markers

Fish Health

Monitoring of mortality and growth between tagged and control fish is being undertaken for all three marking techniques

			· · · · · · · · · · · · · · · · · · ·					
	Spawning	Fertilsation	Hatch success	First feeding	Vaccination	Smoltifaction	Sea Transfer	Production Size
Vaccination								
Mortality					No difference	No difference	No difference	
Growth								
					r	 	1	 _
Egg immersion								
Mortality		No difference	No difference	No difference	No difference			
Growth								
					·			·
Maternal Transfer								
Mortality	No difference	No difference	No difference	No difference	No difference			
Growth				1				

Monitoring of production parameters

Scenario 1: Marking 100% of production with 1 marker (achievable)

Scenario 1: Marking 100% of production with 1 marker (achievable)

Scenario 2: Marking 80% of production (24 company's)

Scenario 1: Marking 100% of production with 1 marker (achievable)

Scenario 2: Marking 80% of production (24 company's) (achievable)

Scenario 3: Marking 100% of production (54 company's) (achievable)

Scenario 1: Marking 100% of production with 1 marker (achievable)

Scenario 2: Marking 80% of production (24 company's) (achievable)

Scenario 3: Marking 100% of production (54 company's) (achievable)

Scenario 4: Marking all farm locations (500-1000 sites)

(Individual codes possible, but currently restrained by cost, and would require further optimisation of techniques)

Marking 300 million farmed Atlantic salmon with 1 Ba code

Vaccination (50 g fish)	Material Cost (\$US)	Total
¹³⁷ Ba @ 0.001 μg. g ⁻¹ fish weight	\$4.36 per mg	
(15 g for 300 million parr)	(~ \$0.0006 per parr)	\$65400

Marking 300 million farmed Atlantic salmon with 1 Ba code

Vaccination (50 g fish)	Material Cost (\$US)	Total
¹³⁷ Ba @ 0.001 μg. g ⁻¹ fish weight	\$4.36 per mg	
(15 g for 300 million parr)	(~ \$0.0006 per parr)	\$65400

Egg immersion (2000 eggs L ⁻¹)	Material Cost (\$US)	Total
¹³⁷ Ba @ 100 μg. L ⁻¹	\$4.36 per mg	
(150,000 L for 300 million eggs)	(~ \$0.44 per litre)	\$65400

Marking 300 million farmed Atlantic salmon with 1 Ba code

Vaccination (50 g fish)	Material Cost (\$US)	Total
¹³⁷ Ba @ 0.001 μg. g ⁻¹ fish weight	\$4.36 per mg	
(15 g for 300 million parr)	(~ \$0.0006 per parr)	\$65400

Egg immersion (2000 eggs L ⁻¹)	Material Cost (\$US)	Total
¹³⁷ Ba @ 100 μg. L ⁻¹	\$4.36 per mg	
(150,000 L for 300 million eggs)	(~ \$0.44 per litre)	\$65400

Maternal Transfer (5000 eggs per 10 kg brood fish)	Material Cost (\$US)	Total	
¹³⁷ Ba @ 0.02 μg. g ⁻¹ brood fish weight	\$4.36 per mg		
(60000 brood fish for 300 million eggs)	(~ \$0.872 per brood fish)	\$52320	

Method: Marking fish once via vaccination or once via maternal transfer with Ba codes

Vaccination: Marks the region of the otolith developing at the parr/pre-smolt stage

Maternal Transfer: Marks the core of the otolith developing at the eyed egg stage

5 largest companies make up 53% of production: Marine Harvest 22%, Lerøy Seafoods 13%, Salmar 9%, Cermaq 5% and Grieg Seafoods 4%.

19 medium companies make up a further 27% of production: average size 1.43% each.

Data is sourced from: http://marineharvest.com/PageFiles/1296/2013%20Salmon%20Handbook%2027-04-13.pdf

Marking 80% of production (24 biggest companies, 24 codes)

Company	Production (%)	Production (n fish)	Code number	Marker cost per fish	Cost per company
Marine Harvest	22%	66000000	2MT	0.0002	11510
Lerøy Seafoods	13%	39000000	1V	0.0002	8502
Salmar	9%	27000000	3V	0.0003	8910
Cermaq	5%	15000000	4MT	0.0005	7746
Grieg Seafoods	4%	12000000	5V	0.0006	7746
6	1.42%	4263158	16MT	0.0007	2945
7	1.42%	4263158	7V	0.0010	4272
8	1.42%	4263158	6MT	0.0026	11255
9	1.42%	4263158	15MT	0.0028	11998
10	1.42%	4263158	18MT	0.0032	13456
11	1.42%	4263158	26MT	0.0033	14200
12	1.42%	4263158	9V	0.0055	23362
13	1.42%	4263158	8MT	0.0080	34173
14	1.42%	4263158	17MT	0.0082	34917
15	1.42%	4263158	20MT	0.0085	36375
16	1.42%	4263158	10V	0.0086	36812
17	1.42%	4263158	28MT	0.0087	37118
18	1.42%	4263158	12V	0.0098	41587
19	1.42%	4263158	19MT	0.0107	45428
20	1.42%	4263158	29MT	0.0108	46172
21	1.42%	4263158	27MT	0.0112	47630
22	1.42%	4263158	30MT	0.0113	48373
23	1.42%	4263158	21V	0.0119	50881
24	1.42%	4263158	11V	0.0122	52011
			Average cost	\$0.0059	\$26557
			Total cost for marking 8	0% of production	\$663937

Method: Marking fish with Ba codes either via vaccination or maternal transfer or marking with a combination of maternal transfer and vaccination.

5 largest companies make up 53% of production: Marine Harvest 22%, Lerøy Seafoods 13%, Salmar 9%, Cermaq 5% and Grieg Seafoods 4%.

19 medium companies make up a further 27% of production: Average size 1.43% each.

30 small companies make up the final 20% of production: Average size 0.67% each.

FHF

Company Number	Company (% size)	Production (n fish)	Code number	Cost per fish	Cost per company	
Marine Harvest	22%	66000000	2MT	\$0.0002	\$11,510	
Lerøy	13%	39000000	1V	\$0.0002	\$8,502	▲ 5 largest companies (53% production)
Salmar	9%	27000000	3V	\$0.0003	\$8,910	
Cermag	5%	15000000	1V2MT	\$0.0004	\$5,886	
Grieg	4%	12000000	3V2MT	\$0.0005	\$6.053	\$0.0003 per fish to tag
6	1.42%	4263158	4MT	\$0.0005	\$2,201	
7	1.42%	4263158	5V	\$0.0006	\$2,752	
8	1.42%	4263158	16MT	\$0.0007	\$2,945	
9	1.42%	4263158	1V4MT	\$0.0007	\$3,131	
10	1.42%	4263158	5V2MT	\$0.0008	\$3,495	
11	1.42%	4263158	3V4MT	\$0.0008	\$3,608	
12	1.42%	4263158	1V16MT	\$0.0009	\$3,874	
13	1.42%	4263158	7V	\$0.0010	\$4,272	
14	1.42%	4263158	5V4MT	\$0.0010	\$4,352	
15	1.42%	4263158	5V4MT	\$0.0012	\$4,953	▲ 19 medium companies (27% production)
16	1.42%	4263158	7V2MT	\$0.0012	\$5,015	
17	1.42%	4263158	5V16MT	\$0.0013	\$5,697	
18	1.42%	4263158	7V4MT	\$0.0015	\$6,473	\$0.0015 per fish to tag
19	1.42%	4263158	7V16MT	\$0.0017	\$7,217	
20	1.42%	4263158	6MT	\$0.0026	\$11,255	
21	1.42%	4263158	15MT	\$0.0028	\$11,998	
22	1.42%	4263158	1V6MT	\$0.0029	\$12,184	
23	1.42%	4263158	3V6MT	\$0.0030	\$12,662	
24 25	1.42%	4263158	1V15MT	\$0.0030	\$12,928	
25	0.67% 0.67%	2000000 2000000	3V15MT 18MT	\$0.0031 \$0.0032	\$6,289 \$6,313	
26 27	0.67%	2000000	18MT 5V6MT	\$0.0032 \$0.0033	\$6,313 \$6,571	
27 28	0.67%	2000000	26MT	\$0.0033	\$6,662	
28 29	0.67%	2000000	1V18MT	\$0.0033	\$6,749	
30	0.67%	2000000	5V15MT	\$0.0034	\$6,920	
31	0.67%	2000000	3V18MT	\$0.0035	\$6,973	▲ 30 small companies (20% of production)
32	0.67%	2000000	1V26MT	\$0.0035	\$7,098	
33	0.67%	2000000	7V6MT	\$0.0036	\$7,284	
34	0.67%	2000000	3V26MT	\$0.0037	\$7,322	\$0.0057 per fish to tag
35	0.67%	2000000	5V18MT	\$0.0038	\$7,604	
36	0.67%	2000000	7V15MT	\$0.0038	\$7,633	
37	0.67%	2000000	5V26MT	\$0.0040	\$7,953	
38	0.67%	2000000	7V18MT	\$0.0042	\$8,317	
39	0.67%	2000000	7V26MT	\$0.0043	\$8,666	
40	0.67%	2000000	9V	\$0.0055	\$10,960	
41	0.67%	2000000	9V2MT	\$0.0057	\$11,309	In total E4 companies (1000/ of preduction)
42	0.67%	2000000	9V4MT	\$0.0060	\$11,993	In total 54 companies (100% of production)
43	0.67%	2000000	9V16MT	\$0.0062	\$12,342	
44	0.67%	2000000	8MT	\$0.0080	\$16,032	As a new product of $(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
45	0.67%	2000000	9V6MT	\$0.0081	\$16,240	Average cost of \$0.0017 per fish to tag.
46	0.67%	2000000	17MT	\$0.0082	\$16,381	
47	0.67%	2000000	1V8MT	\$0.0082	\$16,468	
48	0.67%	2000000	9V15MT	\$0.0083	\$16,589	Total material cost. 500 000
49	0.67%	2000000	3V8MT	\$0.0083	\$16,692	Total material cost: \$500,000
50	0.67%	2000000	20MT	\$0.0085	\$17,065	
51	0.67%	2000000	10V	\$0.0086	\$17,270	
52	0.67%	2000000	9V18MT	\$0.0086	\$17,273	
53	0.67%	2000000	5V8MT	\$0.0087	\$17,323	
54	0.67%	2000000	28MT	\$0.0087	\$17,414	l l l l l l l l l l l l l l l l l l l

Analysis costs Scenario 1

Monitoring program sampling 10000 fish per year

Analysis of 10000	Days	Equipment	Labour	Totals
samples per year	required	cost per Day	cost	
Sample preparation (50 per day)	200		200 Days	?
Laser ablation (50 per day)	200	\$2400	200 Days	\$480000 + L
Data analysis (50 per day)	200		200 Days	?
			Total Estimated	
			Cost	?

Sample analysis costs based on standard processing costs

Analysis costs Scenario 2

Rapid response to an escape event

Analysis of 50 samples	Days required	Equipment cost	Labour cost	Totals
Sample preparation	2		2 Days	?
Laser ablation	1	\$2400	1 Day	\$2400 + L
Data analysis and report	2		2 Days	?
			Total Estimated	
			Cost	?

Sample analysis and report can be completed in 1 week from the day otoliths are delivered to the laboratory

Sample analysis and report can be completed in 1 week from the day otoliths are delivered to the laboratory